Contoh Soal Limit Tak Sampai Dan Pembahasan Lengkap
Anda tentu pernah mempelajari mengenai limit tak hingga. Sebelum nya, terdapat 4 macam rumus dengan kondisi yang berbeda yang harus anda hafal sebelum menghitung limit tak sampai dengan cepat.
- Rumus yang pertama ini dipakai yaitu dikala nilai m (pangkat tertinggi di f(x)) sama dengan nilai n (pangkat tertinggi di g(x)), maka kita hanya tinggal membagi a dengan p untuk mengetahui hasil limit tak hingganya, yang dimana a berasal dari f(x) = ax2+ bx + c dan p berasal dari g(x) = px2 + qx + r.
- Rumus yang kedua terjadi dikala m (pangkat tertinggi di f(x)) lebih besar dari pada n (pangkat tertinggi di g(x)) dan a lebih besar dari pada 0. Maka hasil dari limit takhingganya yaitu + ∞ (positif tak terhingga)
- Rumus yang ketiga terjadi dikala m (pangkat tertinggi di f(x)) lebih besar dari pada n (pangkat tertinggi di g(x)) dan a lebih kecil dari pada 0. Maka hasil dari limit takhingganya yaitu - ∞ (muinus atau negative tak terhingga)
- Rumus yang keempat terjadi ktika m (pangkat tertinggi di f(x)) lebih kecil dari pada n (pangkat tertinggi di g(x)). Maka sudah niscaya nilai limit tak sampai nya yaitu 0.
Keadaan m = n
Contoh soal :
Tentukan hasil dari lim x →∞ (x2 - 2x + 1)/(x2 + 1) !!!!
Jawab :
Dik :
f(x) = x2 - 2x + 1
a = 1
b = -2
c = 1
g(x) = x2 + 1
p = 1
r = 1
m = 2
n = 2
Karena m = n atau 2 = 2 maka kita gunakan rumus yang pertama.
lim x →∞ f(x)/g(x) = a/p
Masukan semua hal yang diketahui pada rumus, maka :
lim x →∞ (x2 - 2x + 1)/(x2 + 1) = 1/1 = 1
Makara dengan cepat sanggup diketahui bahwa lim x →∞ (x2 - 2x + 1)/(x2 + 1) yaitu 1.
Keadaan m > n dan a > 0
Contoh soal :
Tentukan hasil dari lim x →∞ (2x3 - 7)/(x2 + 1) !!!!
Jawab :
Dik :
f(x) = 2x3 - 7
a = 2
c = -7
g(x) = x2 + 1
p = 1
r = 1
m = 3
n = 2
Karena m > n dan a > 0, maka kita gunakan rumus yang kedua :
lim x →∞ f(x)/g(x) = + ∞
Kemudian masukan semua hal yang diketahui ke dalam rumus :
lim x →∞ (2x3 - 7)/(x2 + 1) = + ∞
Makara nilai dari lim x →∞ (2x3 - 7)/(x2 + 1) yaitu + ∞ (positive tak terhingga)
Keadaan m > n dan a < 0
Contoh soal :
Tentukan hasil dari lim x →∞ (-5x5 + 2)/(x2 - 1) !!!!
Jawab :
Dik :
f(x) = -5x5 + 2
a = -5
c =2
g(x) = x2 - 1
p = 1
r = -1
m = 5
n = 2
Karena m > n dan a < 0, maka kita gunakan rumus yang ketiga :
lim x →∞ f(x)/g(x) = - ∞
Kemudian masukan semua hal yang diketahui pada soal ke dalam rumus, maka :
lim x →∞ (-5x5 + 2)/(x2 - 1) = - ∞
Makara nilai dari lim x →∞ (-5x5 + 2)/(x2 - 1) yaitu - ∞ (negative tak terhingga)
Keadaan m < n
Contoh soal :
Tentukan hasil dari lim x →∞ (6x2 - 7)/(3x7 + 1) !!!!
Jawab :
dik :
f(x) = 6x2 - 7
a = 6
c = -7
g(x) = 3x7 + 1
p = 3
r = 1
m = 2
n = 7
Karena m < n maka kita gunakan rumus yang ke empat :
lim x →∞ f(x)/g(x) = 0
Masukan semua hal yang diketahui pada rumus, maka :
lim x →∞ (6x2 - 7)/(3x7 + 1) = 0
Makara nilai lim x →∞ (6x2 - 7)/(3x7 + 1) yaitu 0
( sumber : aciknadzirah.blogspot.com/search?q=cara-cepat-menghitung-limit-tak-hingga )
Praktis bukan menghitung limit tak sampai ? anda perlu memahami nya dengan teliti dan terperinci, biar anda bisa memecahkan soal - soal limit tak sampai dengan tepat. Makara jikalau anda ingin menghitung limit tak sampai dengan cepat dan akurat, maka anda perlu menghafalkan terlebih dahulu 4 rumus yang sudah dijabarkan dan juga dijelaskan di atas. Selamat Belajar :))
Sumber http://www.contohsoaljawab.com/
0 Response to "Contoh Soal Limit Tak Sampai Dan Pembahasan Lengkap"
Posting Komentar